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Introduction 

The well-known Banach contraction principle, which declares 
thaton a complete metric space foreach single-valued contraction self-
mapping, always there exists a unique fixed point. This basic principle has 
been exploited and generalized by many researchers using different 
contraction conditions, applying different mappings in different spaces.  
Review of Literature 

Nadler [8] has used the concept of Hausdorff metric and obtained 
a multi-valued version of the Banach contraction principle .Among others 
Husain and Latif [2], Feng and Liu [1] have generalized Nadler’s fixed point 
result without using the Hausdorff metric.On the other hand, Kannan [4] 
has proved an interesting fixed point result for single-valued maps in the 
setting of metric spaces which is not an extension of the Banach 
contraction principle .While Latif and Beg [6] have obtained a multivalued 
version of Kannan’s fixed point result. In 1996 the team of Kada, Suzuki 
and Takahashi [3] came with a new and more generalized concept of w-
distance hence, many earlier results are improved. Simultaneously  Suzuki  
and  Takahashi  [12]  worked on weakly contractive maps  for  single  and 
multi-valued functions and produced some important generalizations of  
Banach contraction principle and based Nadler’s results. Parallel to this 
work there co-researchers Suzuki [13] improve the Kannan’s fixed point 
results by using w-distance. After that a bulk of investigations have been 

observed [5] [10][13] and [15]. 
Applying the concept of w-distence Abdul Latif et al. [7]proved 

some fixed point and common fixed point results for multi-valued maps with 
the setting of metric spaces, by which they generalized and improve many 
results including the results of Latif and Beg [6], Suzuki [13], Kannan [4]. 

Till then no work is reported in this field.  
Aim of the Study 

Our aimis to consider non-commuting JSR and JSR∗mappings with 

w-distance in complete metric space and proved unique common fixed 
point results.We have furnish some examples in support of our main 
results.  
2. Preliminaries 

A bulk of literature exist with commuting and non-commuting 
mappings.We are defining non-commuting pair of maps as 𝐽𝑆𝑅 and 𝐽𝑆𝑅∗ 

maps which is more improved than the known mappings. 
On a metric space the concept of w-distance was introduced by Kada et 
al.[3] in the following manner:  

Let  𝑝: 𝑋 × 𝑋 →  0,∞  be a function over a metric space  𝑋, 𝑑 , 
then𝑝 is  called 𝑤- distance  if  

1. ∀  𝑥, 𝑦, 𝑧 ∈ X, 𝑝(𝑥, 𝑧) ≤ 𝑝(𝑥, 𝑦) +  𝑝(𝑦, 𝑧) 
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2. ∀  𝑥 ∈ 𝑋  and 𝑦𝑛 → 𝑦  in 

𝑋,𝑝 𝑥, 𝑦 ≤ lim inf  𝑝 𝑥, 𝑦𝑛 , that is 

p is lower semi continuous with respect to the second variable 𝑦 

 

3. for any givenε > 0 , there must be a  𝛿 > 0 such 

that 𝑝 𝑥, 𝑧 ≤ 𝛿 and  𝑝 𝑧, 𝑦 ≤ 𝛿 ⟹ 𝑝 𝑥, 𝑦 ≤ 𝜀 
Clearly, everymetric is a w-distance but not 
conversely. 
Definition 2.1 

A pair  𝑆, 𝑇  of self-mappings 𝑆 and 𝑇 ona 

metric space(𝑋, 𝑑)is said to beweakly commuting if 
and only if  
𝑑 𝑆𝑇𝑥 , 𝑇𝑆𝑥 ≤ 𝑑 𝑆𝑥, 𝑇𝑥 for each 𝑥 in 𝑋. 
Definition 2.2  

Let  𝑆 and 𝑇be theself-mappings ona metric 

space  𝑋, 𝑑  with a 𝑤-distance 𝑝,then𝑆 and𝑇 are said 

to be  p-weakly commuting if and only if 

 𝑚𝑎𝑥 [𝑝(𝑆𝑇𝑥, 𝑇𝑆𝑥), 𝑝(𝑇𝑆𝑥 , 𝑆𝑇𝑥) ] ≤ 𝑝(𝑆𝑥 , 𝑇𝑥)  for each 
𝑥 in 𝑋.  
Definition 2.3  

Let  𝑆 and 𝑇be theself-mappings ona metric 

space  (X, d) .Then  𝑆 and 𝑇 are said to be weakly 

compatible if and only if each sequence {𝑥𝑛 } such that 
for some𝑡 in 𝑋. 

lim
n→∞

𝑆𝑥𝑛 =  lim
n→∞

𝑇𝑥𝑛 = t  ⟹ lim
n→∞

𝑑(𝑆𝑇𝑥𝑛   𝑇𝑆𝑥𝑛) =  0 

Definition 2.4  

Let  𝑆 and 𝑇 be the self-mappings ona metric 

space (𝑋, 𝑑)with  𝑤-distance 𝑝,then 𝑆 and 𝑇 are said 

to be (𝑝) compatible if every sequence {𝑥𝑛} such that 

for some 𝑡 in 𝑋 
lim

 n→∞
𝑆𝑥𝑛 = lim

 n→∞
𝑇𝑥𝑛 = 𝑡 as 𝑛 → ∞  

⟹ 𝑚𝑎𝑥  𝑝 𝑆𝑇𝑥𝑛 , 𝑇𝑆𝑥𝑛 , 𝑝 𝑇𝑆𝑥𝑛   , 𝑆𝑇𝑥𝑛  ≥ 0, as 𝑛 → ∞  
Definition 2.5 

The pair 𝑆, 𝑇  of two self-mappings S and 

Ton a metric space(𝑋, 𝑑) is said to be S-JSR 

mappings if and only if each sequence {xn } such that  

lim
n→∞

𝑆𝑥𝑛 = lim
n→∞

𝑇𝑥𝑛 = t for some 𝑡  in 𝑋 

⟹ 𝛼𝑑(𝑆𝑇𝑥𝑛   , 𝑇𝑥𝑛  ) ≤  𝛼𝑑(𝑆𝑆𝑥𝑛 , 𝑆𝑥𝑛) 

whereα = lim sup or lim inf. 
Definition 2.6  

The pair 𝑆, 𝑇  of two self-mappings S and T 

on a metric space (𝑋, 𝑑) is said to be S-𝐽𝑆𝑅 𝑝  

mappings if and only if each sequence {xn } such that  

lim
n→∞

𝑆𝑥𝑛 =  lim
n→∞

𝑇𝑥𝑛 = 𝑡 for some 𝑡 in 𝑋   

⟹ max αp 𝑆𝑇𝑥𝑛 , 𝑇𝑥𝑛 , αp  𝑇𝑥𝑛 , 𝑆𝑇𝑥𝑛  
≤ max αp(𝑆𝑥𝑛 , 𝑆𝑥𝑛), αp(𝑆𝑥𝑛  , 𝑆𝑆𝑥𝑛 )  

where α = lim sup or lim⁡inf 
Definition 2.7  

The pair 𝑆, 𝑇  of two self-mappings S and T 

on a metric space (𝑋, 𝑑) is said to be S-𝐽𝑆𝑅 𝑝 
∗  

mappings if and only if each sequence {xn } such that 

lim⁡
n→∞

𝑆𝑥𝑛 =  lim
n→∞

𝑇𝑥𝑛 =  𝑡 for some 𝑡 in 𝑋  

⟹ max αp 𝑇𝑆𝑥𝑛 , 𝑆𝑇𝑥𝑛 , αp  𝑆𝑇𝑥𝑛 , 𝑇𝑆𝑥𝑛  
≤ max αp(𝑆𝑆𝑥𝑛 , 𝑇𝑇𝑥𝑛), αp(𝑇𝑇𝑥𝑛  , 𝑆𝑆𝑥𝑛)  

where α = lim sup or lim⁡inf 
Now we give some lemma which are useful 

in our main results. 
Lemma 2.1 (see [3] and [13]) 

 If  𝑋, 𝑑 be a metric space, 𝑝 be a 𝑤-distance 

on 𝑋, {𝑥𝑛 }, {𝑦𝑛 } ⊂ 𝑋 be sequences and  𝛼𝑛 , {𝛽𝑛 } ⊂
(0, ∞)be sequences such that𝛼𝑛 → 0 and 𝛽𝑛 → 0 and 
for 𝑥, 𝑦, 𝑧 ∊ 𝑋. Then we have the following conditions: 

1. 𝑝 𝑥𝑛 , 𝑦 ≤  𝛼𝑛 , 𝑝 𝑥𝑛 , 𝑧 ≤  𝛽𝑛 , ∀ 𝑛 ∈ 𝑁 ⟹ 𝑦 =
𝑧.Particularly, if𝑝 𝑥, 𝑦 = 0, 𝑝(𝑥, 𝑧) = 0 ⟹  𝑦 = 𝑧. 

2. 𝑝 𝑥𝑛 , 𝑦𝑛 ≤  𝛼𝑛 , 𝑝 𝑥𝑛   , 𝑧 ≤  𝛽𝑛∀ 𝑛 ∈ 𝑁 ⟹ 𝑦𝑛 → 𝑧. 
3. 𝑝 𝑥𝑛 , 𝑥𝑚  ≤  𝛼𝑛 , ∀ 𝑛, 𝑚 ∊ 𝑁 with 𝑚 > 𝑛 ⟹ {𝑥𝑛 } is a 

Cauchy sequence. 
4. 𝑝 𝑦, 𝑥𝑛 ≤  𝛼𝑛 , ∀𝑛 ∊ 𝑁 ⟹ {𝑥𝑛 }is a Cauchy 

sequence. 
Lemma 2.2 

If  𝑋, 𝑑 be a metric space, 𝑝 be a 𝑤-distance 

on 𝑋and let 𝑆 and 𝑇 be self mappings on 𝑋, satisfying 
𝑇𝑥𝑛 = 𝑆𝑥𝑛+1 for 𝑛 = 0,1,2, … ,assume that there exists 

a continuous self mapping  ξ of  [0, ∞] such that 

𝑝 𝑇𝑥, 𝑇𝑦 ≤ 𝜉 𝑝 𝑆𝑥, 𝑆𝑦                                                           

(2.2.1) 
for all 𝑥, 𝑦 ∊ 𝑋 and for each 𝑡 > 0 

𝜉 𝑡 < 𝑡                                                                           
(2.2.2) 
Then 
(A)  for an arbitrary ∊ > 0, there exist positive integer 

𝑚, 𝑠  such that 𝑚 ≤ 𝑛 < 𝑠 implies  𝑝 𝑇𝑥𝑛   , 𝑇𝑥𝑠 <
 ∊. 

(B) the sequence {𝑇𝑥𝑛 } is a Cauchy sequence. 
Proof 

 We have 

𝑝 𝑇𝑥𝑛 , 𝑇𝑥𝑛+1 ≤ 𝜉 𝑝 𝑆𝑥𝑛 , 𝑆𝑥𝑛+1   

= 𝜉 𝑝 𝑇𝑥𝑛−1, 𝑇𝑥𝑛   

< 𝑝(𝑇𝑥𝑛−1 , 𝑇𝑥𝑛) 

for𝑛 = 1,2,3, … .. Thus {𝑝(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1)} is a decreasing 
sequence of non negative real number and there 
exists non negative real number 𝜆 such that 

lim𝑛→∞(𝑛 + 1)⁡𝑝(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1) = 𝜆, 

Let  λ > 0, then the inequality 

𝑝 𝑇𝑥𝑛 , 𝑇𝑥𝑛+1 ≤ 𝜉 𝑝 𝑇𝑥𝑛−1, 𝑇𝑥𝑛   

Now the continuity of ξ we haveλ < ξ λ < 𝜆,which is 

contradiction. 
Therefore λ = 0 so 𝑝(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1) → 0 as 𝑛 → ∞. 
(A) Now suppose that (A) does not hold. Then, there 
exists an ∈ > 0 such that for all sufficiently large 

positive integer𝑘, there exist positive integers 

𝑠𝑘 , 𝑛𝑘with 𝑘 ≤ 𝑛𝑘 < 𝑠𝑘such that  

∈≤  𝑝 𝑇𝑥𝑛𝑘 , 𝑇𝑥𝑠𝑘   ,  𝑝 𝑇𝑥𝑛𝑘 , 𝑇𝑥𝑛𝑘−1  < ∈                        

(2.2.3) 
From (2.2.3), we have 
𝑝 𝑇𝑥𝑛𝑘 , 𝑇𝑥𝑠𝑘  → ∈ and 𝑝 𝑇𝑥𝑛𝑘 , 𝑇𝑥𝑛𝑘−1 → 0 as 𝑘 → ∞ 

And𝑝 𝑇𝑥𝑛𝑘 , 𝑇𝑥𝑠𝑘  ≤  𝑝 𝑇𝑥𝑛𝑘 , 𝑇𝑥𝑛𝑘 +1 + 𝑝 𝑇𝑥𝑛𝑘 +1 , 𝑇𝑥𝑠𝑘   

≤  𝑝 𝑇𝑥𝑛𝑘 , 𝑇𝑥𝑛𝑘 +1 + ξ 𝑝 𝑇𝑥𝑛𝑘 +1, 𝑇𝑥𝑠𝑘    

 ≤  𝑝 𝑇𝑥𝑛𝑘 , 𝑇𝑥𝑛𝑘 +1 + ξ 𝑝 𝑇𝑥𝑛𝑘 , 𝑇𝑥𝑠𝑘−1  (2.2.4) 

By the hypothesis and (2.2.4),we obtain ∊ ≤ ξ ∊ < ∊. 

This is contradiction therefore (A) holds.   
Alsowe have from the third condition of the definition 
of a 𝑤-distance 𝑝and(𝐴) that {𝑇𝑥𝑛} is a Cauchy 
sequence. 
Lemma 2.3 

If  𝑋, 𝑑 be a metric space, 𝑝 be a 𝑤-distance 

on 𝑋, let 𝑆 and 𝑇 be self-mappings on 𝑋such 

that𝑇𝑥𝑛 = 𝑆𝑥𝑛+1 for n = 0,1,2, …..., with the following 

conditions: for given ∈> 0, there exists 𝛿(∈) > 0 such 

that  
∊≤ 𝑝 𝑆𝑥, 𝑆𝑦 <∊ +𝛿 ⇒ 𝑝 𝑇𝑥, 𝑇𝑦 <∊, (2.3.1) 
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 𝑝(𝑆𝑥, 𝑆𝑦) <∊ ⇒ 𝑝(𝑇𝑥, 𝑇𝑦) ≤ 1/2 𝑝(𝑆𝑥, 𝑆𝑦) (2.3.2) 
The 

(C) For an arbitrary ∈> 0, there exists a positive 

integer 𝑀 such that 𝑀 ≤ n < 𝑠 implies 

𝑝(𝑇𝑥𝑛 , 𝑇𝑥𝑆  ) <∊ . 
(D) The sequence  𝑇𝑥𝑛 is a cauchy sequence. 

3. Main Results 
Theorem 3.1  

If  𝑋, 𝑑 be a metric space, 𝑝 be a 𝑤-distance 

on 𝑋and let 𝑆 and 𝑇 be 𝑆 − 𝐽𝑆𝑅(𝑝) self mappings of 𝑋, 

satisfying 𝑇(X) ⊂ S(X), (2.2.1), (2.2.2) and for each 

𝑧 ∈ 𝑋 with 𝑧 ≠ 𝑇𝑧  or 𝑧 ≠ 𝑆𝑧  
inf 𝑝 𝑇𝑥, 𝑧 + 𝑝 𝑆𝑥, 𝑧 + 𝑝 𝑆𝑇𝑥, 𝑆𝑇𝑥 + 𝑝 𝑆𝑆𝑥, 𝑇𝑇𝑥 , 𝑥

∈ 𝑋 (3.1.1) 
Then there is a unique common fixed point of 

T and S. 
Proof 

Because𝑇(𝑋) ⊂ 𝑆(𝑋),therefore in 𝑋, we can 

define a sequence  𝑥𝑛 such that  𝑇𝑥𝑛 = 𝑆𝑥𝑛+1. Since X 
is complete and𝑇𝑥𝑛 = 𝑆𝑥𝑛+1there exists 𝑧 in 𝑋 such that  
𝑇𝑥𝑛 → 𝑧 and𝑆𝑥𝑛 → 𝑧. 
Suppose that 𝑧 ≠ 𝑇𝑧or 𝑧 ≠ 𝑆𝑧, since 
lim𝑛→∞ 𝑇𝑥𝑛 = lim𝑛→∞ 𝑆𝑥𝑛 = 𝑧, therefore by (A) and the 
lower semi continuity, we have  

lim
𝑛→∞

𝑝( 𝑇𝑥𝑛 , z) = lim
𝑛→∞

𝑝( 𝑆𝑥𝑛 , z) 

Now, 
0 < inf 𝑝 𝑇𝑥, 𝑧 + 𝑝 𝑆𝑥, 𝑧 + 𝑝 𝑇𝑆𝑥, 𝑇𝑆𝑥 

+ 𝑝 𝑆𝑆𝑥, 𝑇𝑇𝑥 , 𝑥 ∈ 𝑋  
≤  inf{𝑝(𝑇𝑥𝑛 , 𝑧) + 𝑝(𝑆𝑥𝑛 , 𝑧) + 𝑝(𝑇𝑆𝑥𝑛 , 𝑇𝑆𝑥𝑛  )

+ 𝑝(𝑆𝑆𝑥𝑛 , 𝑇𝑇𝑥𝑛  )} 
≤  inf{𝑝(𝑇𝑥𝑛 , 𝑧) + 𝑝(𝑆𝑥𝑛 , 𝑧)
+ 𝑚𝑎𝑥⁡[𝛼𝑝(𝑆𝑇𝑥𝑛 , 𝑇𝑆𝑥𝑛 ), 𝛼𝑝(𝑆𝑆𝑥𝑛 , 𝑇𝑇𝑥𝑛  ) ]
+                                         𝑝(𝑆𝑆𝑥𝑛 , 𝑇𝑇𝑥𝑛)} < 0. 

which is a contradiction and hence, our 
assumption that 𝑧 ≠ 𝑇𝑧 or 𝑧 ≠ 𝑆𝑧 was wrong. 
Therefore,𝑇𝑧 = 𝑆𝑧 = 𝑧. Applying (2.2.1)of Lemma 2.2 
and  2.3.1 , (2.3.2) of Lemma 2.3 uniqueness of the 
fixed point is obvious.  
Theorem 3.2 

Let(𝑋, 𝑑) be a complete metric space with a 𝑤-
distance 𝑝 and let 𝑆 and 𝑇 be S-JSR∗(p) self mappings of 
𝑋, satisfying 𝑇(X) ⊂ S(X), (2.2.1and (2.2.2), for each 
𝑧 ∈ 𝑋 with 𝑧 ≠ 𝑇𝑧  or 𝑧 ≠ 𝑆𝑧  

inf 𝑝 𝑇𝑥, 𝑧 + 𝑝 𝑆𝑥, 𝑧 + 𝑝 𝑇𝑆𝑥, 𝑆𝑇𝑥 + 𝑝 𝑆𝑆𝑥, 𝑇𝑇𝑥 , 𝑥
∈ 𝑋 (3.2.1) 

Then there is a unique common fixed point of T and S. 
Proof 

Because 𝑇(𝑋) ⊂ 𝑆(𝑋), therefore in 𝑋, we can 
define a sequence  𝑥𝑛 such that  𝑇𝑥𝑛 = 𝑆𝑥𝑛+1. Since X is 
complete and𝑇𝑥𝑛 = 𝑆𝑥𝑛+1there exists 𝑧 𝑖𝑛 𝑋 such that  
𝑇𝑥𝑛 → 𝑧 𝑎𝑛𝑑 𝑆𝑥𝑛 → 𝑧. 
Suppose that 𝑧 ≠ 𝑇𝑧or 𝑧 ≠ 𝑆𝑧, since 
lim𝑛→∞ 𝑇𝑥𝑛 = lim𝑛→∞ 𝑆𝑥𝑛 = 𝑧, therefore by (A) and the 
lower semi continuity, we have  

lim
𝑛→∞

𝑝( 𝑇𝑥𝑛 , z) = lim
𝑛→∞

𝑝( 𝑆𝑥𝑛 , z) 

Now, 
0 < inf 𝑝 𝑇𝑥, 𝑧 + 𝑝 𝑆𝑥, 𝑧 + 𝑝 𝑇𝑆𝑥, 𝑇𝑆𝑥 

+ 𝑝 𝑆𝑆𝑥, 𝑇𝑇𝑥 , 𝑥 ∈ 𝑋  
≤  inf{𝑝(𝑇𝑥𝑛 , 𝑧) + 𝑝(𝑆𝑥𝑛 , 𝑧) + 𝑝(𝑇𝑆𝑥𝑛 , 𝑇𝑆𝑥𝑛  )

+ 𝑝(𝑆𝑆𝑥𝑛 , 𝑇𝑇𝑥𝑛  )} 

≤  inf{𝑝(𝑇𝑥𝑛 , 𝑧) + 𝑝(𝑆𝑥𝑛 , 𝑧)
+ 𝑚𝑎𝑥⁡[𝛼𝑝(𝑆𝑇𝑥𝑛 , 𝑇𝑆𝑥𝑛 ), 𝛼𝑝(𝑆𝑆𝑥𝑛 , 𝑇𝑇𝑥𝑛  ) ]
+                                         𝑝(𝑆𝑆𝑥𝑛 , 𝑇𝑇𝑥𝑛)} < 0. 

which is a contradiction and hence, our 
assumption that 𝑧 ≠ 𝑇𝑧 or 𝑧 ≠ 𝑆𝑧 was wrong. Therefore 
𝑇𝑧 = 𝑆𝑧 = 𝑧. Applying (2.2.1) of Lemma 2.2 and 
 2.3.1 , (2.3.2) of Lemma 2.3 uniqueness of the fixed 
point is obvious. 
4. Examples 
Example 4.1  

Let 𝑋 = [0,1] with 𝑑 𝑥, 𝑦 = |𝑥 − 𝑦| and 𝑆, 𝑇 

are two self mapping on 𝑋 defined by 𝑆𝑥 =
2

𝑥+2
, 𝑇𝑥 =

1

x+1
for 𝑥 ∈ 𝑋. Now we have the sequence {𝑥𝑛 } in 𝑋 is 

defined as 𝑥𝑛 =
1

𝑛
 , 𝑛 ∈ 𝑁.Then we have 

lim
𝑛→∞

𝑇𝑥𝑛 = lim
𝑛→∞

𝑆𝑥𝑛 = 1 

|𝑆𝑇𝑥𝑛 − 𝑇𝑥𝑛 | →
1

3
and|𝑆𝑆𝑥𝑛 − 𝑆𝑥𝑛 | →

2

3
 as 𝑛 → ∞.  

Clearly we have 
 𝑆𝑇𝑥𝑛 − 𝑇𝑥𝑛  < |𝑆𝑆𝑥𝑛 − 𝑆𝑥𝑛 |.  

Thus pair   𝑆, 𝑇  is S-JSR mapping. But this pair 
is neither compatible nor weakly compatible nor other 
non commuting mapping. Hence pair of 𝐽𝑆𝑅 mapping is 
more general than others. 
Example 4.2 

Let 𝑋 = [0,1] with 𝑝 𝑥, 𝑦 = max⁡{ 
𝑥

2
−

𝑦,12|𝑥−𝑦|} and 𝑆,𝑇 are two self mapping on X defined 
by 

𝑆𝑥 =
2

𝑥+2
, 𝑇𝑥 =

1

x+1
 for 𝑥 ∈ 𝑋.  

Now we have the sequence {𝑥𝑛 } in 𝑋 is defined 

as𝑥𝑛 =
1

𝑛
 , 𝑛 ∈ 𝑁.Then we have 

lim𝑛→∞ 𝑇𝑥𝑛 = lim𝑛→∞ 𝑆𝑥𝑛 = 1. Now 

𝑝 𝑆𝑇𝑥𝑛 , 𝑇𝑥𝑛 = max   
𝑆𝑇𝑥𝑛

2
− 𝑇𝑥𝑛  ,

1

2
 𝑆𝑇𝑥𝑛 − 𝑇𝑥𝑛   

= max  
2

3
,
1

6
 =

2

3
 

𝑝 𝑇𝑥𝑛 , 𝑆𝑇𝑥𝑛 = max   
𝑇𝑥𝑛

2
− 𝑇xn  ,

1

2
 𝑇𝑥𝑛 − 𝑇𝑥𝑛   

= max  
1

6
,
1

6
 =

1

6
 

𝑝 𝑆𝑆𝑥𝑛 , 𝑆𝑥𝑛 = max   
𝑆𝑆𝑥𝑛

2
− 𝑆𝑥𝑛  ,

1

2
 𝑆𝑆𝑥𝑛 − 𝑆𝑥𝑛   

= max  
2

3
,
1

3
 =

2

3
 

𝑝 𝑆𝑥𝑛 , 𝑆𝑆𝑥𝑛 = max   
𝑆𝑥𝑛

2
− 𝑆𝑆𝑥𝑛  ,

1

2
 𝑆𝑥𝑛 − 𝑆𝑆𝑥𝑛   

= max  
1

6
,
1

3
 =

1

3
 

Clearly pair  𝑆, 𝑇  is S-JSR(p) mapping. Also 
𝑝 𝑥, 𝑦 ≠ 𝑝 𝑦, 𝑥 . 
Example 4.3 

Let 𝑋 = [0,1] with 𝑝 𝑥, 𝑦 = max⁡{ 
𝑥

2
−

𝑦,12|𝑥−𝑦|} and 𝑆,𝑇 are two self mapping on X defined 
by 

𝑆𝑥 =
2

𝑥+2
, 𝑇𝑥 =

1

x+1
 for 𝑥 ∈ 𝑋.  

Now we have the sequence {𝑥𝑛 } in 𝑋 is defined 

as 𝑥𝑛 = 1 −
1

𝑛
 , 𝑛 ∈ 𝑁.Then we have 

lim
𝑛→∞

𝑇𝑥𝑛 = lim
𝑛→∞

𝑆𝑥𝑛 = 1. 
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In view of Theorem 3.1,𝑧 = 1 is unique common fixed 
point of 𝑇and . 
Conclusion 

So we have established two fixed point 
theorems for non-commutingJSR and 

JSR
∗
mappingsvia w-distance in complete metric 

space are proved supported with examples. 
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